题目内容
【题目】如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________
【答案】
【解析】
过点C作CH⊥AE于H点,利用旋转的性质可得∠E=45°,再利用等腰直角三角形的性质和勾股定理求出HD=4﹣2 和EH=CH=2,即可解答.
解:根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.
∴∠BCA=∠ACD=∠ADC=75°.
∴∠ECD=180°﹣2×75°=30°.
∴∠E=75°﹣30°=45°.
过点C作CH⊥AE于H点,
在Rt△ACH中,CH= AC=2,AH=2.
∴HD=AD﹣AH=4﹣2 .
在Rt△CHE中,∵∠E=45°,
∴EH=CH=2.
∴DE=EH﹣HD=2﹣(4﹣2)=2﹣2.
故答案为2﹣2.
练习册系列答案
相关题目
【题目】(9分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接写出结果)
(2)设销售该运动服的月利润为元,那么售价为多少时,当月的利润最大,最大利润是多少?