题目内容
(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_ST/images0.png)
【答案】分析:(1)首先判定当t=4时,点B与点Q重合,点P与点D重合,则求△BDC的面积即可.
(2)分别从4≤t<6与6≤t≤10去分析,求得各自的函数解析式,再分析各种情况下的最大值即可求得答案.
解答:解:(1)当t=4时,CQ=4cm,
过点A作AE⊥BC于E,过点D作DF⊥BC于F,![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/images0.png)
∵AE=DF=
cm,∠AEB=∠DFC=90°,AB=CD,
∴△ABE≌△DFC,
∴BE=CF,
∵EF=AD=2cm,BC=4cm,
∴BE=CF=1cm,
∴点D与点P重合,
∴S△BDC=
BC•DF=
×4×
=2
(cm2);
(2)当4≤t<6时,P在线段AD上,作KH⊥QH,过点M作MN⊥BC于N,
∵∠Q=30°,∠1=60°,
∴∠2=∠1-∠Q=30°,
∠3=∠2=30°,
∴QB=BM=QC-BC=t-4,
∵∠R=∠Q=30°,∠DCB=∠ABC=60°,
∴∠CKR=∠DCB-∠R=30°=∠R,
∴KC=CR=6-t,
∴HK=KC•sin60°=
(6-t)
∴同理:MN=
(t-4),
∴S=S△PQR-S△BQM-S△CRK=
QR•PG-
BQ•EM-
CR•FN
=
×6×
-
×
(t-4)2-
×
(6-t)2=-
t2+5
t-10
,
∵a=-
<0,开口向下,
∴S有最大值,
当t=-
=5时,S最大值为
;
当6≤t≤10时,P在线段DA的延长线上,
∵∠1=60°,∠2=30°,
∴∠3=90°
∴RC=t-6,BR=4-RC=4-(t-6)=10-t,
∴TB=
BR=
,TR=
BR=
(10-t),
∴S=
TB•TR=
×
×
(10-t)=
t2-
t+
,
当a>0时,开口向上,-
=10,
∴t=6时,S最大值为2
;
综上,t=5时,S最大值为
.
点评:本小题主要考查等腰三角形、等腰梯形、解直角三角形、二次函数等基础知识,考查运算能力、推理能力和空间观念.
(2)分别从4≤t<6与6≤t≤10去分析,求得各自的函数解析式,再分析各种情况下的最大值即可求得答案.
解答:解:(1)当t=4时,CQ=4cm,
过点A作AE⊥BC于E,过点D作DF⊥BC于F,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/images0.png)
∵AE=DF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/0.png)
∴△ABE≌△DFC,
∴BE=CF,
∵EF=AD=2cm,BC=4cm,
∴BE=CF=1cm,
∴点D与点P重合,
∴S△BDC=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/images6.png)
∵∠Q=30°,∠1=60°,
∴∠2=∠1-∠Q=30°,
∠3=∠2=30°,
∴QB=BM=QC-BC=t-4,
∵∠R=∠Q=30°,∠DCB=∠ABC=60°,
∴∠CKR=∠DCB-∠R=30°=∠R,
∴KC=CR=6-t,
∴HK=KC•sin60°=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/images8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/6.png)
∴S=S△PQR-S△BQM-S△CRK=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/18.png)
∵a=-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/19.png)
∴S有最大值,
当t=-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/21.png)
当6≤t≤10时,P在线段DA的延长线上,
∵∠1=60°,∠2=30°,
∴∠3=90°
∴RC=t-6,BR=4-RC=4-(t-6)=10-t,
∴TB=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/25.png)
∴S=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/32.png)
当a>0时,开口向上,-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/33.png)
∴t=6时,S最大值为2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/34.png)
综上,t=5时,S最大值为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231541210669695/SYS201310212315412106696020_DA/35.png)
点评:本小题主要考查等腰三角形、等腰梯形、解直角三角形、二次函数等基础知识,考查运算能力、推理能力和空间观念.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目