题目内容
【题目】如图,等边的边长为,点从点出发,以秒的速度由向匀速运动,点从点出发,以秒的速度由向匀速运动,、交于点,当点到达点时,、两点停止运动,设、两点运动的时间为秒,若时,则的值是( )
A.B.C.D.
【答案】C
【解析】
由等边三角形性质可得:AC=BC=AB=8cm,∠BAC=∠ABC=∠C=60°,根据题意可得CP=tcm,CQ=2rcm,进而可得BP=(8-t)cm,AQ=(8-2t)cm,根据三角形外角性质可得∠ABQ=∠CAP,即可证明△ABQ≌△CAP(ASA),即可求得的值.
∵△ABC是等边三角形,
∴AC=BC=AB=8cm,∠BAC=∠ABC=∠C=60°,
由题意得,
∴
∵,
∴∠ABQ=∠CAP,
在△ABQ和△CAP中,
,
∴
∴,
∴解得秒.
故答案为C.
练习册系列答案
相关题目