题目内容

如图,一副三角板拼在一起,O为AD的中点,AB = a.将△ABO沿BO对折于△A′BO,                        

M为BC上一动点,则A′M的最小值为         

 

【答案】

【解析】解:由折叠的性质知:AB=A′B=a,∠ABO=∠A′BO;

∵O是Rt△ABD斜边AD的中点,

∴OA=OB,即△ABO是等边三角形;

∴∠ABO=∠A′BO=60°;

∵∠ABD=90°,∠CBD=45°,

∴∠ABC=∠ABD+∠CBD=135°,

∴∠A′BM=135°-120°=15°;

易知当A′M⊥BC时,A′M最短;

过M作MH⊥A′B于H,取A′B的中点N,连接MN,如图;

在Rt△A′BM中,N是斜边A′B的中点,则BN=NM=A′N=,∠B=∠NMB=15°;

∴∠A′NM=30°;

由勾股定理得:

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网