题目内容
【题目】如图,点 A,B,C,D 依次在同一条直线上,点 E,F 分别在直线 AD 的两侧,已知 BE//CF,∠A=∠D,AE=DF.
(1)求证:四边形 BFCE 是平行四边形.
(2)若 AD=10,EC=3,∠EBD=60°,当四边形 BFCE是菱形时,求 AB 的长.
【答案】(1)证明见解析;(2)AB=.
【解析】
(1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;
(2)利用全等三角形的性质证明AB=CD即可得出结论.
(1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.
∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.
(2)∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3.
∵AD=10,AB=DC,∴AB(10﹣3).
练习册系列答案
相关题目