题目内容
【题目】如图1,在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移4个单位长度后恰好经过两点。
(1)求直线及抛物线的解析式;
(2)将直线沿轴向上平移5个单位长度后与抛物线交于两点,若点是抛物线位于直线下方的一个动点,连接,交直线于点,连接和。设的面积为,当S取得最大值时,求出此时点的坐标及的最大值;
(3)如图2,记(2)问中直线与轴交于点,现有一点从点出发,先沿轴到达点,再沿到达点,已知点在轴上运动的速度是每秒2个单位长度,它在直线上运动速度是1个单位长度。现要使点按照上述要求到达点所用的时间最短,请简述确定点位置的过程,求出点的坐标,不要求证明。
【答案】(1)直线BC的解析式为y=-x+4,抛物线的解析式为y=x2-5x+4.(2)△PQE的面积最大值为12.此时P(2,-2);(3)K(,0).
练习册系列答案
相关题目