题目内容

如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4)

1.当 时,求弦PA、PB的长度;

2.当x为何值时,PD×CD的值最大?最大值是多少?

 

【答案】

 

1.PA=,PB=

2.当时, PD×CD 有最大值,最大值是2.

【解析】⑴由已知知,AB∥PC,证得△PCA∽△APB.求出PA 的长,利用勾股定理求得PB的长

⑵过O作OE⊥PD,求出PD和CD的积,即可得出结论

解:⑴∵⊙O与直线l相切于点A,AB为⊙O的直径,∴AB⊥l.

又∵PC⊥l,∴AB∥PC. ∴∠CPA=∠PAB.

∵AB为⊙O的直径,∴∠APB=90°.

∴∠PCA=∠APB.∴△PCA∽△APB.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网