题目内容
若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于_____.
如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A、B的对应点A′、B′的坐标分别是( )
A. (﹣3,3)、(﹣2,4) B. (3,﹣3)、(1,4) C. (3,﹣3)、(﹣2,4) D. (﹣3,3)、(1,4)
如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是______.
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.
①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.
②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)画出图示,解方程|x﹣3|+|x+2|=9.
若某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏了20%,则这单买卖是___了(填“赚”或“亏”).
已知|3m-12|+ =0,则2m-n等于( ).
A. 9 B. 11 C. 13 D. 15
某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为( )
A. 6.4x元 B. (6.4x+80)元
C. (6.4x+16)元 D. (144﹣6.4x)元
如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是( )
A. 8 B. 12 C. D.
先化简,后求值:(a+)(a﹣)﹣a(a﹣2),其中a=.