题目内容

【题目】如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).

(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则SEFG与SACD是否存在8倍的关系?若有请直接写出F点的坐标.

【答案】
(1)

解:直线AB的解析式为y=2x+4,

令x=0,得y=4;令y=0,得x=﹣2.

∴A(﹣2,0)、B(0,4).

∵抛物线的顶点为点A(﹣2,0),

∴设抛物线的解析式为:y=a(x+2)2

点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,

∴抛物线的解析式为y=﹣(x+2)2


(2)

解:平移过程中,设点E的坐标为(m,2m+4),

则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,

∴F(0,﹣m2+2m+4).

①∵点E为顶点,∴∠BEF≥90°,

∴若△BEF与△BAO相似,只能是点E作为直角顶点,

∴△BAO∽△BFE,

,即 ,可得:BE=2EF.

如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).

∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),

∴BH=|2m|,FH=|﹣m2|.

在Rt△BEF中,由射影定理得:BE2=BHBF,EF2=FHBF,

又∵BE=2EF,∴BH=4FH,

即:4|﹣m2|=|2m|.

若﹣4m2=2m,解得m=﹣ 或m=0(与点B重合,舍去);

若﹣4m2=﹣2m,解得m= 或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为锐角,故此情形不成立.

∴m=﹣

∴E(﹣ ,3).

②假设存在.

联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),

∴SACD= ×4×4=8.

∵SEFG与SACD存在8倍的关系,

∴SEFG=64或SEFG=1.

联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).

∴点E与点G横坐标相差2,即:|xG|﹣|xE|=2.

当顶点E在y轴左侧时,如答图2﹣2,

SEFG=SBFG﹣SBEF= BF|xG|﹣ BF|xE|= BF(|xG|﹣|xE|)=BF.

∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.

∴|﹣m2+2m|=64或|﹣m2+2m|=1,

∴﹣m2+2m可取值为:64、﹣64、1、﹣1.

当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.

∴﹣m2+2m可取值为:﹣64、1、﹣1.

∵F(0,﹣m2+2m+4),

∴F坐标为:(0,﹣60)、(0,3)、(0,5).

同理,当顶点E在y轴右侧时,点F为(0,5);

综上所述,SEFG与SACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).


【解析】(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:SACD=8;若SEFG与SACD存在8倍的关系,则SEFG=64或SEFG=1;如答图2﹣2所示,求出SEFG的表达式,进而求出点F的坐标.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网