题目内容
【题目】如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=2,DB=3,则BC的长是_______.
【答案】
【解析】
根据折叠的性质可得弧BC等于弧BDC,再根据在同圆或等圆中,等弧所对的圆周角相等可得∠BAC=∠BCD+∠CBD,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠BCD+∠CBD,从而得到∠BAC=∠ADC,根据等角对等边可得AC=CD,过点C作CE⊥AD于E,根据等腰三角形三线合一的性质可得AE=DE=AD,然后利用△ACE和△CBE相似,根据相似三角形对应边成比例列式求出CE,在Rt△BCE中,利用勾股定理列式计算即可得解.
∵弧BC沿弦BC折叠交直径AB于点D,
∴弧BC等于弧BDC,
∴∠BAC=∠BCD+∠CBD,
在△BCD中,∠ADC=∠BCD+∠CBD,
∴∠BAC=∠ADC,
∴AC=CD,
过点C作CE⊥AD于E,
则AE=DE=AD=×2=1,
∴BE=BD+DE=3+1=4,
∵AB是直径,
∴∠ACB=90°,
∴∠ACE+∠BCE=∠ACB=90°,
∵∠ACE+∠CAE=180°-90°=90°,
∴∠CAE=∠BCE,
又∵∠AEC=∠BEC=90°,
∴△ACE∽△CBE,
∴=,
∴CE2=AEBE,
∴CE=2
在Rt△BCE中,BC2=4+16=20
BC=
练习册系列答案
相关题目