题目内容

【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一点,EC⊥BC,EC=BD,DF=FE.

求证:(1)△ABD≌△ACE;

(2)AFDE.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)根据等腰三角形两底角相等求出∠B=∠BCA=45°,再求出∠ACE=45°,从而得到∠B=∠ACE,然后利用“边角边”即可证明△ABD≌△ACE;(2)根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形三线合一的性质证明即可.

(1)∵AB=AC,∠BAC=90°,

∴∠B=∠BCA=45°,

∵EC⊥BC,

∴∠ACE=90°﹣45°=45°,

∴∠B=∠ACE,

△ABD△ACE中,

∴△ABD≌△ACE(SAS);

(2)由(1)知,△ABD≌△ACE,

∴AD=AE,

等腰△ADE中,∵DF=FE,

∴AF⊥DE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网