题目内容
下图为一个直棱柱,其中两底面为全等的梯形,其面积和为16,四个侧面均为长方形,其面积和为45.若此直棱柱的体积为24,则所有边的长度和为( )
A. 30 B. 36 C. 42 D. 48
已知△ABC中,AB=AC,现将△ABC折叠,使点A、B两点重合,折痕所在的直线与直线AC的夹角为40°,则∠B的度数为______°.
如图,如果直线l上依次有3个点A、B、C,那么
(1)在直线l上共有多少射线?多少条线段?
(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?
(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?
如图,点A位于点O的
A. 南偏东35°方向上 B. 北偏西65°方向上
C. 南偏东65°方向上 D. 南偏西65°方向上
,下列各式成立的是
A. B. C. D.
在平面直角坐标系中,点 B(m,n) 在第一象限,m,n 均为整数,且满足n =.
(1) 求点 B 的坐标;
(2) 将线段 OB 向下平移 a 个单位后得到线段 O′B′,过点 B′作 B′C⊥y 轴于点 C,若 3CO=2CO′,求a 的值;
(3) 过点 B 作与 y 轴平行的直线 BM,点 D 在 x 轴上,点 E 在 BM 上,点 D 从 O 点出发以每秒钟 3个单位长度的速度沿 x 轴向右运动,同时点 E 从 B 点出发以每秒钟 2 个单位长度的速度沿BM 向下运动,在点 D,E 运动的过程中,若直线 OE,BD 相交于点 G,且 5≤S△OGB≤10,则点G 的横坐标 xG的取值范围是 .
.如图 1,AB∥CD,直线 EF 交 AB 于点 E,交 CD 于点 F,点 G 在 CD 上,点 P在直线 EF 左侧,且在直线 AB 和 CD 之间,连接 PE,PG.
(1) 求证: ∠EPG=∠AEP+∠PGC;
(2) 连接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度数.
(3) 如图 2,若 EF 平分∠PEB,∠PGC 的平分线所在的直线与 EF 相交于点 H,则∠EPG 与∠EHG之间的数量关系为 .
如果│x-3│=3-x,则 x 的取值范围是___.
如下图是一个正方体,它的表面展开图可能是下面四个展开图中的( )
A. (A) B. (B) C. (C) D. (D)