题目内容
【题目】如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.
(1)当点F与点C重合时如图1,证明:DF+BE=AF;
(2)当点F在DC的延长线上时如图2,当点F在CD的延长线上时如图3,线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.
【答案】(1)证明见解析(2)证明见解析
【解析】试题分析:(1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE-DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.
试题解析:
解:(1)由折叠可得AB=AB′,BE=B′E,
∵四边形ABCD是正方形,
∴AB=DC=DF,∠B′CE=45°,
∴B′E=B′F,
∴AF=AB′+B′F,
即DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;
图(3)的结论:BE﹣DF=AF;
图(2)的证明:延长CD到点G,使DG=BE,连接AG,
易证△ABE≌△ADG,
∴∠BAE=∠DAG,∠AEB=∠AGD,
∵∠BAE=∠B′AE,
∴∠B′AE=∠DAG,
∴∠GAF=∠DAE,
∵CB∥AD,
∴∠AEB=∠EAD,
∴∠AGD=∠GAF,
∴GF=AF,
∴BE+DF=AF;
图(3)的证明:在BC上取点M,使BM=DF,连接AM,
易证△ABM≌△ADF,
∴∠BAM=∠FAD,AF=AM,
∵△ABE≌AB′E,
∴∠BAE=∠EAB′,
∴∠MAE=∠DAE,
∵AD∥BE,
∴∠AEM=∠DAB,
∴∠MAE=∠AEM,
∴ME=MA=AF,
∴BE﹣DF=AF.