题目内容
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.
求证:(1)△ABG≌△AFG;
(2)求△FGC的面积.
【答案】(1)证明见解析;(2)3.6.
【解析】
试题分析:(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;
(3)首先过C作CM⊥GF于M,由勾股定理以及由面积法得,CM=2.4,进而得出答案.
试题解析:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
∵
∴△ABG≌△AFG(HL);
(2)过C作CM⊥GF于M,
∵BG=GF=3,
∴CG=3,EC=6-2=4,
∴GE==5,
CMGE=GCEC,
∴CM×5=3×4,
∴CM=2.4,
∴S△FGC=GF×CM=3.6.
练习册系列答案
相关题目