题目内容
【题目】如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:
(1)点B′的坐标;
(2)直线AM所对应的函数关系式.
【答案】(1)B'的坐标为:(﹣4,0).(2)直线AM的解析式为:y=﹣x+3.
【解析】
试题分析:(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;
(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
解:(1)y=﹣x+8,
令x=0,则y=8,
令y=0,则x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10﹣6=4,
∴B'的坐标为:(﹣4,0).
(2)设OM=m,则B'M=BM=8﹣m,
在Rt△OMB'中,m2+42=(8﹣m)2,
解得:m=3,
∴M的坐标为:(0,3),
设直线AM的解析式为y=kx+b,
则,
解得:,
故直线AM的解析式为:y=﹣x+3.
练习册系列答案
相关题目