题目内容
计算与求值
(1)|
-2|+
-
;
(2)求下列x的值
①(x-1)2=9
②8(x3+1)=-56
(3)如果3m+12的立方根是3,求2m+6的平方根.
(1)|
3 |
(-2)2 |
36 |
(2)求下列x的值
①(x-1)2=9
②8(x3+1)=-56
(3)如果3m+12的立方根是3,求2m+6的平方根.
分析:(1)求出每一部分的值,再代入求出即可.
(2)①两边开平方,即可得出两个一元一次方程,求出即可.
②整理后得出x3=-8,根据立方根定义求出即可.
(3)求出m的值,代入后求出2m+6的值,再求出平方根即可.
(2)①两边开平方,即可得出两个一元一次方程,求出即可.
②整理后得出x3=-8,根据立方根定义求出即可.
(3)求出m的值,代入后求出2m+6的值,再求出平方根即可.
解答:解:(1)原式=2-
+2-6
=-2-
;
(2)①(x-1)2=9,
开方得:x-1=±3,
x1=4,x2=-2.
②8(x3+1)=-56
8x3+8=-56,
x3=-8,
x=-2;
(3)∵3m+12的立方根是3,
∴3m+12=27,
∴m=5,
2 m+6=16,
∴2m+6的平方根即是16的平方根,是±4.
3 |
=-2-
3 |
(2)①(x-1)2=9,
开方得:x-1=±3,
x1=4,x2=-2.
②8(x3+1)=-56
8x3+8=-56,
x3=-8,
x=-2;
(3)∵3m+12的立方根是3,
∴3m+12=27,
∴m=5,
2 m+6=16,
∴2m+6的平方根即是16的平方根,是±4.
点评:本题考查了立方根和平方根的应用,主要考查学生的计算能力.
练习册系列答案
相关题目