题目内容

如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.
(1)求⊙O的半径;
(2)求这个圆柱形木块的表面积.(结果可保留π和根号)

【答案】分析:(1)根据的长为底面周长的,可将扇形的圆心角求出,再根据弦AD的长可将⊙O的半径求出;
(2)圆柱形木块的表面积S=2S圆+S侧,将上下两个圆的面积和侧面的面积求出,相加即可.
解答:解:(1)如图:连接OA,OD,过O作OE⊥AD,垂足为E,
由已知的长=圆周长,
∴扇形OAmD的圆心角为360°×=240°.
∠AOD=360°-240°=120°.
∵OE⊥AD,
∴∠AOE=120°=60°,AE=AD.
∵AD=24cm,
∴AE=12cm.
在Rt△AOE中,sin∠AOE=
∴AO==(cm).
即⊙O的半径为cm.

(2)设圆柱的表面积为S,则S=2S圆+S侧,
2S圆=2π×(82=384π(cm2),
S侧=2π×8×25=400π(cm2),
∴S=(384+400)πcm2
答:木块的表面积为(384+400)πcm2
点评:本题要求掌握圆柱的有关性质和表面积的求法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网