题目内容
【题目】如图,四边形ABCD与ECGF是两个边长分别为a,b的正方形,写出用a,b表示阴影部分面积的代数式,并计算当a=4cm,b=6cm时,阴影部分的面积.
【答案】解:S=a2+b2﹣ a2﹣ (a+b)b=a2+b2﹣ a2﹣ ab﹣ b2= a2﹣ ab+ b2 .
当a=4cm,b=6cm时S= ×42﹣ ×4×6+ ×62=14cm2
【解析】阴影部分面积可视为大小正方形减去空白部分(即△ABD和△BFG),把对应的三角形面积代入即可得S= a2﹣ ab+ b2 . 直接把a=4cm,b=6cm代入(1)中可求出阴影部分的面积.
【考点精析】关于本题考查的代数式求值,需要了解求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入才能得出正确答案.
练习册系列答案
相关题目