题目内容

如图,PA、PB分别切⊙O于A、B两点,点C在优弧数学公式上,∠P=80°,则∠C的度数为


  1. A.
    50°
  2. B.
    60°
  3. C.
    70°
  4. D.
    80°
A
分析:连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.
解答:∵PA是圆的切线.
∴∠OAP=90°,
同理∠OBP=90°,
根据四边形内角和定理可得:
∠AOB=360°-∠OAP-∠OBP-∠P=360°-90°-90°-80°=100°,
∴∠C=∠AOB=50°.
故选A.
点评:本题主要考查了切线的性质、四边形的内角和以及圆周角定理,正确求得∠AOB的度数,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网