题目内容

【题目】如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD⊥AB于D,交y轴于点E.

(1)求证:△COE≌△BOA;

(2)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.

①判断△OMN的形状.并证明;

②当△OCM和△OAN面积相等时,求点N的坐标.

【答案】(1)证明见解析;(2)①△MON是等腰直角三角形;②N的坐标为(1.5,2).

【解析】

(1)代入解析式后得出OB,OA的长,再利用全等三角形的判定证明即可;
(2)①根据全等三角形的判定和性质得出OM=ON,再利用等腰直角三角形的判定解答即可;
②根据全等三角形的性质和三角形面积公式解答即可.

解:(1)把x=0代入y=﹣x+4,

解得:y=4,

∴OB=4,

y=0代入y=﹣x+4,解得:x=3,

∴OA=3,

∵C(﹣4,0),

∴OC=4,

∴OB=OC,

∵CD⊥AB,

∴∠ACD+∠CAD=90°,

∵∠ACD+∠OEC=90°,

∴∠CAD=∠OEC,

△COE△BOA

∴△COE≌△BOA(AAS);

(2)①∵ON⊥OM,

∴∠MON=90°,

∴∠COM+∠AON=90°,

∵∠AON+∠BON=90°,

∴∠COM=∠BON,

∵△COE≌△BOA,

∴∠OCM=∠OBN,

△COM△BON

∴△COM≌△BON(ASA),

∴OM=ON,∠COM=∠BON,

∵∠COM+∠MOE=90°,

∴∠BON+∠MOE=90°,

∠MON=90°,

∴△MON是等腰直角三角形;

②∵△COM≌△BON,△OCM△OAN面积相等,

∴△BON△OAN面积相等,

△OAN面积是△AOB面积的一半,

解得: =2,

y=2代入y=﹣x+4,

解得:x=1.5,

N的坐标为(1.5,2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网