题目内容
【题目】(1)探索:请你利用图(1)验证勾股定理.
(2)应用:如图(2),已知在中,
,
,分别以AC,BC为直径作半圆,半圆的面积分别记为
,
,则
______.(请直接写出结果).
(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,
千米,且
千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.
【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.
【解析】
(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;
(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;
(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.
(1)由面积相等可得,
∴,
∴,
∴.
(2),
,
∴.
故答案为:
(3)设千米,则
千米.
∵到A,B两个城市的距离相等,
∴,即
,
由勾股定理,得,
解得.
即O应建在离C点52.5千米处.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金 | 每台乙型收割机的租金 | |
A地区 | 1800 | 1600 |
B地区 | 1600 | 1200 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.