题目内容
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论中正确结论的个数是 ( )
①△ABG≌△AFG;②∠EAG=450;③BG=GC; ④AG∥CF; ⑤S△FGC=3.6
A. 2个 B. 3个 C. 4个 D. 5个
【答案】D
【解析】分析:①用HL证明△ABG≌△AFG;②由△ADE≌△AFE,△ABG≌△AFG,得到∠EAG=∠BAD;③在直角三角形CEG中,由勾股定理求GC的长;④根据基本图形“等腰三角形+角平分线→平行线”证明;⑤由GF:EG=3:5,得S△FCG:S△ECG=3:5.
详解:①根据轴对称的性质得,△ADE≌△AFE,
所以AD=AF,∠AFE=∠D=90°.
因为AB=AD,∠B=90°,所以AB=AF,
因为AG=AG,所以△ABG≌△AFG.
则①正确;
②因为△ADE≌△AFE,△ABG≌△AFG,
所以∠DAE=∠FAE,∠BAG=∠FAG,
所以∠EAG=∠FAE+∠FAE=∠BAD=×90°=45°.
则②正确;
③因为△ADE≌△AFE,△ABG≌△AFG,
所以ED=EF,GB=GF,所以EG=DE+BG,
设BG=x,则CG=FG=6-x,DE=2,CE=4,EG=x+2=x+2.
Rt△CEG中,由勾股定理得,CG2+CE2=EG2,
所以(6-x)2+42=(x+2)2,解得x=3.
则CG=6-x=3,又BG=x=3,所以BG=CG.
则③正确;
④因为△ABG≌△AFG,所以∠AGB=∠AGF.
因为BG=CG,BG=GF,所以CG=GF,所以∠GCF=∠GFC.
因为∠BGE=∠GCF+∠GFC,所以∠AGB=∠GCF,所以AG∥CF.
则④正确;
⑤因为GF=3,GE=5,所以S△FGC=S△GCE=×GC·CE=××3×4=3.6.
则⑤正确.
故选D.
【题目】我们规定:有理数xA用数轴上点A表示,xA叫做点A在数轴上的坐标;有理数xB用数轴上点B表示,xB叫做点B在数轴上的坐标.|AB|表示数轴上的两点A,B之间的距离.
(1)借助数轴,完成下表:
xA | xB | xA﹣xB | |AB| |
3 | 2 | 1 | 1 |
1 | 5 |
|
|
2 | ﹣3 |
|
|
﹣4 | 1 |
|
|
﹣5 | ﹣2 |
|
|
﹣3 | ﹣6 |
|
|
(2)观察(1)中的表格内容,猜想|AB|= ;(用含xA,xB的式子表示,不用说理)
(3)已知点A在数轴上的坐标是﹣2,且|AB|=8,利用(2)中的结论求点B在数轴上的坐标.