题目内容
【题目】如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.
(1)当∠E=∠F时,则∠ADC=_____°;
(2)当∠A=55°,∠E=30°时,求∠F的度数;
(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.
【答案】(1)90°;(2)∠F=40°;(3)∠A=.
【解析】(1)∵∠E=∠F,∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠BCF+∠F,
∴∠ADC=∠ABC,
∵四边形ABCD是⊙O的内接四边形,
∴∠ADC+∠ABC=180°,
∴∠ADC=90°.
故答案为:90°;
(2)∵在△ABE中,∠A=55°,∠E=30°,
∴∠ABE=180°﹣∠A﹣∠E=95°,
∴∠ADF=180°﹣∠ABE=85°,
∴在△ADF中,∠F=180°﹣∠ADF﹣∠A=40°;
(3)∵∠ADC=180°﹣∠A﹣∠F,∠ABC=180°﹣∠A﹣∠E,
∵∠ADC+∠ABC=180°,
∴180°﹣∠A﹣∠F+180°﹣∠A﹣∠E=180°,
∴2∠A+∠E+∠F=180°,
∴∠A==.
练习册系列答案
相关题目