题目内容

计算:
(1)
x2
x-1
-x-1

(2)
4
+(-2008)0-(
1
3
)-1+|-2|

(3)(2ab2c-3-2÷(a-2b)3
(4)
x2-y2
x
÷(x-
2xy-y2
x
)

(5)
6
x2-9
+
1
x+3
分析:(1)把后边的两项看成一个整体,然后通分相减即可;
(2)首先计算开方,乘方、去掉绝对值符号,然后进行加减运算即可;
(3)首先利用负指数次幂的意义转化成乘法,然后进行单项式的乘法运算即可;
(4)首先计算括号内的分式,然后转化成乘法,最后计算分式的乘法即可;
(5)首先通分,然后进行分式的加减计算.
解答:解:(1)原式=
x2
x-1
-
x+1
1

=
x2
x-1
-
(x+1)(x-1)
x-1

=
x2-(x2-1)
x-1

=
1
x-1


(2)原式=2+1+3+2=8;

(3)原式(2ab2c-3-2•(a-2b)-3
=
1
4
a-2 b-4c6•a6b-3
=
1
4
a4b-7c6
=
a4c6
4b7


(4)原式=
(x+y)(x-y)
x
÷
x2-2xy+y2
x

=
(x+y)(x-y)
x
x
(x-y)2

=
x+y
x-y


(5)原式=
6
(x+3)(x-3)
+
x-3
(x+3)(x-3)

=
x+3
(x+3)(x-3)

=
1
x-3
点评:本题考查分式的混合运算,关键是通分,合并同类项,注意混合运算的运算顺序.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网