题目内容
【题目】已知关于x的方程 x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是( )
A.2
B.1
C.0
D.﹣1
【答案】B
【解析】解:∵方程有两个不相等的实数根, ∴△=b2﹣4ac=[﹣(m﹣3)]2﹣4× m2=9﹣6m>0,
解得:m< ,
∴m的最大整数值是1.
故选B.
【考点精析】根据题目的已知条件,利用求根公式和一元一次不等式组的整数解的相关知识可以得到问题的答案,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集(简称不等式组的解).
【题目】为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.
价目表 | |
每月用水量 | 单价 |
不超出6 m3的部分 | 2元/m3 |
超出6 m3但不超出10 m3的部分 | 4元/m3 |
超出10 m3的部分 | 8元/m3 |
注:水费按月结算. |
(1)填空:若该户居民2月份用水4 m3 , 则应收水费元;
(2)若该户居民3月份用水a m3(其中6<a<10),则应收水费多少元?(用含a的整式表示并化简)
(3)若该户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3 , 求该户居民4,5月份共交水费多少元?(用含x的整式表示并化简)
【题目】甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如表:某同学分析表后得出如下结论:
班级 | 人数 | 中位数 | 方差 | 平均字数 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
①甲、乙两班学生成绩平均水平相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班小.上述结论正确的是( )
A. ①②③ B. ①② C. ①③ D. ②③