题目内容
【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,
∴A(5,0),B(0,10),
∵抛物线过原点,
∴设抛物线解析式为y=ax2+bx,
∵抛物线过点B(0,10),C(8,4),
∴ ,
∴ ,
∴抛物线解析式为y= x2﹣ x,
∵A(5,0),B(0,10),C(8,4),
∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形
(2)
解:如图1,
当P,Q运动t秒,即OP=2t,CQ=10﹣t时,
由(1)得,AC=OA,∠ACQ=∠AOP=90°,
在Rt△AOP和Rt△ACQ中,
,
∴Rt△AOP≌Rt△ACQ,
∴OP=CQ,
∴2t=10﹣t,
∴t= ,
∴当运动时间为 时,PA=QA
(3)
解:存在,
∵y= x2﹣ x,
∴抛物线的对称轴为x= ,
∵A(5,0),B(0,10),
∴AB=5
设点M( ,m),
①若BM=BA时,
∴( )2+(m﹣10)2=125,
∴m1= ,m2= ,
∴M1( , ),M2( , ),
②若AM=AB时,
∴( )2+m2=125,
∴m3= ,m4=﹣ ,
∴M3( , ),M4( ,﹣ ),
③若MA=MB时,
∴( ﹣5)2+m2=( )2+(10﹣m)2,
∴m=5,
∴M( ,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,
∴点M的坐标为:M1( , ),M2( , ),M3( , ),M4( ,﹣ )
【解析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,此题是二次函数综合题,主要考查了待定系数法求函数解析式,三角形的全等的性质和判定,等腰三角形的性质,解本题的关键是分情况讨论,也是本题的难点.