题目内容

如图,已知点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D、E,求证:OB=OC.
分析:根据角平分线性质得出OE=OD,根据ASA证△BEO≌△CDO,根据全等三角形的性质推出即可.
解答:证明:∵点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,
∴OE=OD,∠BEO=∠CDO=90°,
在△BEO和△CDO中
∠BEO=∠CDO
OE=OD
∠EOB=∠DOC

∴△BEO≌△CDO(ASA),
∴OB=OC.
点评:本题考查了全等三角形的性质和判定,注意:①全等三角形的对应角相等,对应边相等,②全等三角形的判定定理有SAS,ASA,AAS,SSS.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网