题目内容
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
【答案】(1)BD=5cm.(2)S阴影= cm2.
【解析】
试题分析:(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;
(2)根据S阴影=S扇形﹣S△OBD即可得到结论.
解:(1)∵AB为⊙O的直径,
∴∠ACB=90°,
∵BC=6cm,AC=8cm,
∴AB=10cm.
∴OB=5cm.
连OD,
∵OD=OB,
∴∠ODB=∠ABD=45°.
∴∠BOD=90°.
∴BD==5cm.
(2)S阴影=S扇形﹣S△OBD=π52﹣×5×5=cm2.
练习册系列答案
相关题目