题目内容

【题目】如图,点P是以O为圆心,AB为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P重合,当此三角板绕点P旋转时,它的斜边和直角边所在的直线与直径AB分别相交于C,D两点.设线段AD的长为x,线段BC的长为y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:如图,连接AP、BP,
∵点P是以O为圆心,AB为直径的半圆的中点,
∴∠APB=90°,∠A=∠ABP=45°,
把△ACP绕点P逆时针旋转90°得到△BPE,
则PC=PE,∠PBE=∠A=45°,
∴∠DBE=∠ABP+∠PBE=45°+45°=90°,
∵∠CPD=45°,
∴∠DPE=∠DPC=45°,
在△PCD和△PED中,

∴△PCD≌△PED(SAS),
∴DE=CD,
∵AB=2,AD=x,BC=y,
∴BE=AC=2﹣y,BD=2﹣x,
CD=AB﹣AC﹣BD=2﹣(2﹣y)﹣(2﹣x)=x+y﹣2,
在Rt△DBE中,BD2+BE2=DE2
即(2﹣x)2+(2﹣y)2=(x+y﹣2)2
整理得,y=
纵观各选项,只有C选项图形符合.
故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网