题目内容
【题目】如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D…的规律绕在ABCD的边上,则细线另一端所在位置的点的坐标是( )
A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
【答案】B
【解析】试题分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案:
∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),
∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3.
∴绕四边形ABCD一周的细线长度为2+3+2+3=10.
∵2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC中间离点B2个单位长度的位置,即(﹣1,﹣1).
故选D.
练习册系列答案
相关题目
【题目】从2开始的连续偶数相加,它们和的情况如下表:
加数的个数(n) | 和(S) |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
… | … |
(1)根据表中的规律,直接写出2+4+6+8+10+12+14=________
(2)根据表中的规律猜想:S=2+4+6+8+…+2n=___________(用n的代数式表示);
(3)利用上题中的公式计算102+104+106+…+200的值(要求写出计算过程).