题目内容
【题目】如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AE.F为AE上一点,且∠BFE=∠C.
(1)ΔABF与ΔADE相似吗?说说你的理由.
(2)若AB=4,∠BAE=30°,求AE的长.
(3)在(1)、(2)的条件下,若AD=3,求BF的长.
【答案】(1)相似,理由见解析;(2);(3)
【解析】
(1)由平行四边形的性质得出∠BAF=∠AED,∠C+∠D=180°,再由已知条件和邻补角的性质得出∠AFB=∠D,即可得出△ABF∽△EAD;
(2)先证出为直角三角形,由直角三角形中30度角所对的直角边是斜边的一半可得,设,结合已知根据勾股定理可列出方程,解方程即可求得结果;
(3)由△ABF∽△EAD,得出,即可求出BF.
解:(1)相似,理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠BAF=∠AED,∠C+∠D=180°,
∵∠BFE=∠C,
∴∠BFE+∠D=180°,
又∵∠BFE+∠AFB=180°,
∴∠AFB=∠D,
∴△ABF∽△EAD;
(2)∵AB∥CD,BE⊥CD,
∴BE⊥AB,则∠ABE=90°,为直角三角形,
∵∠BAE=30°,
∴,
∵,设,则,由勾股定理得:
,即,
解得:,
∴;
(3)由(1)得:△ABF∽△EAD,
∴,
∵AD=3,,,
∴,
∴.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(注:方差公式 .)
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩的方差为 ,你认为推荐谁参加比赛更合适,请说明理由.