题目内容
等腰三角形的两边长为4和8,则周长为
- A.20
- B.16
- C.16或20
- D.12或24
A
分析:题中没有指明哪个是底哪个是腰,故应该分情况进行分析,从而求解.
解答:当4为腰时,因为4+4=8,所以不能构成三角形;
当8为腰长时,因为8+4>8,所以能构成三角形,故周长=8+8+4=20;
故选A.
点评:此题主要考查等腰三角形的性质及三角形三边关系的综合运用,注意分类讨论思想的运用.
分析:题中没有指明哪个是底哪个是腰,故应该分情况进行分析,从而求解.
解答:当4为腰时,因为4+4=8,所以不能构成三角形;
当8为腰长时,因为8+4>8,所以能构成三角形,故周长=8+8+4=20;
故选A.
点评:此题主要考查等腰三角形的性质及三角形三边关系的综合运用,注意分类讨论思想的运用.
练习册系列答案
相关题目