题目内容
【题目】如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO﹣OB﹣BA运动,点P在AO,OB,BA上运动,速度分别为1,,2(长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO﹣OB﹣BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是 ,∠BAO= ;
(2)当t﹦4时,点P的坐标为 ;当t﹦ ,点P与点E重合;
(3)作点P关于直线EF的对称点P′.在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?
【答案】(1)y=﹣x+3;60°;(2)(0,);;(3).
【解析】
(1)利用待定系数法可求得直线AB的解析式,根据直角三角形两锐角互余即可求得∠BAO的度数;
(2)根据点P的运动路线,以及点P在不同阶段的运动速度,即可求得;
(3)分三种情况点P在线段OA上,在线段OB上,在线段AB上结合菱形的判定分别进行讨论即可得.
(1)设过A,B两点的直线解析式是y=kx+b,则有
,
解得,,
∴直线AB解析式是y=﹣x+3,
∵∠B=30°,
∴∠BAO=90°-30°=60°,
故答案为:y=﹣x+;60°;
(2)当t﹦4时,OP=(4﹣3)×=,
∴点P的坐标为(0,);
当点P与点E重合时,(t﹣3)×=t,
解得,t=,
∴t=,点P与点E重合;
故答案为:(0,);;
(3)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°,
∴△EOP≌△FGP(SAS),
∴OP=PG,
又∵OE=FG=t,∠A=60°,
∴AG=FGtan60°=t;
而AP=t,
∴OP=3﹣t,PG=AP﹣AG=t,
由3﹣t=t,得t=;
当点P在线段OB上时,形成的是三角形,不存在菱形;
当点P在线段BA上时,
过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2),则四边形PMEH是矩形,
∴PM=EH.
∵四边形PEP'F是菱形,
∴EH=FH.
∵OE=t,
∴BE=3﹣t,
∴EF=BEtan60°=3﹣,
∴MP=EH=EF=,又BP=2(t﹣6),
在Rt△BMP中,BPcos60°=MP
即2(t﹣6)=,
解得t=.