搜索
题目内容
18、观察下列各式:1×3=1
2
+2×1,2×4=2
2
+2×2,3×5=3
2
+2×3其规律用自然数n表示为
n(n+2)=n
2
+2n
.
试题答案
相关练习册答案
分析:
由1×3=1
2
+2×1,3=1+2;2×4=2
2
+2×2,4=2+2;3×5=3
2
+2×3,5=3+2,可以得出规律:n(n+2)=n
2
+2n.
解答:
解:由1×3=1
2
+2×1,3=1+2;
2×4=2
2
+2×2,4=2+2;
3×5=3
2
+2×3,5=3+2,
由此可以得出规律:一个数×(这个数+2)=这个数的平方+2×这个数,即:n(n+2)=n
2
+2n.
点评:
本题是规律型的,关键在于从题中所给的各式中看出左边两个数的关系及左边和右边的联系,推出规律n(n+2)=n
2
+2n.
练习册系列答案
康华传媒考出好成绩中考试题汇编系列答案
寒假作业甘肃教育出版社系列答案
中考211系列答案
寒假生活四川大学出版社系列答案
响叮当寒假作业广州出版社系列答案
无敌战卷课时作业系列答案
中考夺标全国各省市中考试题分类系列答案
星空小学假期作业寒假乐园新疆青少年出版社系列答案
快乐假期寒假作业延边教育出版社系列答案
寒假直通车河北美术出版社系列答案
相关题目
探索规律
观察下列各式及验证过程:n=2时有式①:
2×
2
3
=
2+
2
3
n=3时有式②:
3×
3
8
=
3+
3
8
式①验证:
2×
2
3
=
2
3
3
=
(
2
3
-2)+2
2
2
-1
=
2(
2
2
-1)+2
2
2
-1
=
2+
2
3
式②验证:
3×
3
8
=
3
3
8
=
(
3
3
-3)+3
3
2
-1
=
3(
3
2
-1)+3
3
2
-1
=
3+
3
8
(1)针对上述式①、式②的规律,请写出n=4时的式子;
(2)请写出满足上述规律的用n(n为任意自然数,且n≥2)表示的等式,并加以验证.
猜想、探索规律
(1)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒…即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第100组应该有种子数.
粒;
(2)已知
a
1
=
1
1×2×3
+
1
2
=
2
3
,
a
2
=
1
2×3×4
+
1
3
=
3
8
,
a
3
=
1
3×4×5
+
1
4
=
4
15
,…
,依据上述规律,则a
99
=
;
(3)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,那么第101个图案中由
个基础图形组成;
(4)观察下列各式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,…,根据观察计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
.
8、观察下列各式,1×3=2
2
-1;3×5=4
2
-1;5×7=6
2
-1;7×9=8
2
-1;…由此,想到此例包含的规律可以用下式( )表示.
A、9×11=10
2
-1
B、a×b=c
2
-1
C、m×(m+1)=(m-1)
2
-1
D、(x+1)(x-1)=x
2
-1
24、观察下列各式:2×4=3
2
-1,3×5=4
2
-1,4×6=5
2
-1,…,10×12=11
2
-1,…,将你猜想到的规律用只含一个字母的式子表示出来:
n(n+2)=(n+1)
2
-1
.
14、观察下列各式:
(1)1=1
2
;(2)2+3+4=3
2
;(3)3+4+5+6+7=5
2
;(4)4+5+6+7+8+9+10=7
2
; …
请你根据观察得到的规律判断下列各式正确的是( )
A、1005+1006+1007+…+3016=2011
2
B、1005+1006+1007+…+3017=2011
2
C、1006+1007+1008+…+3016=2011
2
D、1006+1008+1009+…+3017=2011
2
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总