题目内容
【题目】如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点,延长BC至点F,使CF=CE.
(1)∠ABC的度数.
(2)求证:BE=FE.
【答案】(1)60°;(2)见解析;
【解析】
(1)根据等边三角形的判定得出△ABC是等边三角形,即可得出∠ABC的度数;
(2)根据BE=FE得出∠F=∠CEF=30°,再等边三角形的性质得出∠EBC=30°,即可证明;
(1)∵BE⊥AC于E,E是AC的中点,
∴△ABC是等腰三角形,即AB=BC,
∵AB=AC,
∴△ABC是等边三角形,
∴∠ABC=60°;
(2)∵CF=CE,
∴∠F=∠CEF,
∵∠ACB=60°=∠F+∠CEF,
∴∠F=30°,
∵△ABC是等边三角形,BE⊥AC,
∴∠EBC=30°,
∴∠F=∠EBC,
∴BE=EF;
练习册系列答案
相关题目
【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.