题目内容

【题目】如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且CQ=PA,连接PQ交AC于点D,则DE的长为(

A.1
B.
C.2
D.

【答案】B
【解析】解:过P作PF∥BC交AC于F,如图所示:
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,
∴△APF是等边三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD和△QCD中,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE= AC,
∵AC=3,
∴DE=
故选B.

【考点精析】掌握等边三角形的性质是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°.

一题一题找答案解析太慢了
下载作业精灵直接查看整书答案解析
立即下载
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网