题目内容
如图,已知点O为等腰三角形ABC的底边AB的中点,以点O为圆心,AB为直径的半圆分别交AC,BC于点D,E.
求证:(1)∠AOE=∠BOD;
(2).
生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.
如图, 在△ABC中,AC=3、AB=4、BC=5, P为BC上一动点,PG⊥AC于点G,PH⊥AB
于点H,M是GH的中点,P在运动过程中PM的最小值为( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2 ,则∠A=90°,再结合PG⊥AC,PH⊥AB,可证四边形AGPH是矩形;连接AP,可知当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法,求出GH的值,
详解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2 ,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四边形AGPH是矩形.
连接AP,
∴GH=AP.
∵当AP⊥BC时,AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值为1.2.
故选D.
点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.
【题型】单选题【结束】18
计算:
(1) (2)
(3)
如图,在ABCD中,的平分线交点AD于点E,则AB=4,BC=6. 则DE的长为_______.
“三次抛掷一枚硬币,三次正面朝上”这一事件是____事件(填“必然”、“不可能”、“随机”).
如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为___________.
如图,在正方形网格中,一条圆弧经过,,三点,那么这条圆弧所在圆的圆心是( ).
A. 点 B. 点 C. 点 D. 点
如图,矩形ABCD中,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为 .
由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在_______分钟内,师生不能呆在教室.