题目内容
【题目】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( )
A.2﹣2
B.6
C.2﹣2
D.4
【答案】A
【解析】解:如图,
当∠BFE=∠DEF,点B′在DE上时,此时B′D的值最小,
根据折叠的性质,△EBF≌△EB′F,
∴EB′⊥FD,
∴EB′=EB,
∵E是AB边的中点,AB=4,
∴AE=EB′=2,
∵AB=6,
∴DE==2,
∴DB′=2﹣2.
故选:A.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
练习册系列答案
相关题目
【题目】某服装店用10000元购进A,B两种新式服装,按标价售出后可获得毛利润5400元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示:
类型、价格 | A型 | B型 |
进价(元/件) | 80 | 100 |
标价(元/件) | 120 | 160 |
(1)这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,要使这批服装全部售出后毛利润不低于2000元,则B种服装至多按标价的几折出售?