题目内容
【题目】把一副三角板的直角顶点O重叠在一起.
(1)问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是 ;
(2)拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?
(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.
【答案】(1)180°;(2)180°;(3)60°.
【解析】
试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;
(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;
(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.
解:(1)∵OB平分∠COD,
∴∠BOC=∠BOD=45°.
∵∠AOC+∠BOC=45°,
∴∠AOC=45°,
∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.
故答案为:180°;
(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,
∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;
(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,
∴∠AOD=180°﹣∠BOC.
∵∠AOD=4(90°﹣∠BOC),
∴180°﹣∠BOC=4(90°﹣∠BOC),
∴∠BOC=60°.
【题目】某校九年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序如下:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试.两个程序的结果统计如下:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
请你根据以上信息解答下列问题:
(1)请分别计算甲、乙、丙的得票数;
(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2:5:3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.
【题目】某市近期公布的居民用天然气阶梯价格听证会方案如下:
第一档天然气用量 | 第二档天然气用量 | 第三档天然气用量 |
年用天然气量立方米及以下,价格为每立方米元. | 年用天然气量超出立方米,不足立方米时,超过立方米部分每立方米价格为元. | 年用天然气量立方米以上,超过立方米部分价格为每立方米元. |
例:若某户年使用天气然立方米,按该方案计算,则需缴纳天然气费为:×+×(-)=(元);依此方案请回答:
若小明家年使用天然气立方米,则需缴纳天然气费为_____元(直接写出结果).
年使用天然气立方米,则小红家年需缴纳的天然气费为多少元?
依此方案计算,若王先生家年实际缴纳天然气费元,求该户年使用天然气多少立方米?