题目内容
【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.
求:
(1)P到OC的距离.
(2)山坡的坡度tanα.
(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan37°≈0.60)
【答案】
(1)
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PDtan∠BPD=PDtan26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,
∴CD=PDtan∠CPD=PDtan31°;
∵CD﹣BD=BC,
∴PDtan31°﹣PDtan26.6°=40,
∴0.60PD﹣0.50PD=40,
解得PD=400(米),
∴P到OC的距离为400米
(2)
解:在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),
∵OB=240米,
∴PE=OD=OB﹣BD=40米,
∵OE=PD=400米,
∴AE=OE﹣OA=400﹣300=100(米),
∴tanα= =0.4,
∴坡度为0.4.
【解析】(1)过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根据CD﹣BD=BC,列出方程,求出PD=400即可求得点P到OC的距离;(2)利用求得的线段PD的长求出PE=40,AE=100,然后在△APE中利用三角函数的定义即可求解.