题目内容

25、在菱形ABCD中,∠B=60°,AC是对角线.
(1)如图1,点E、F分别在边BC、CD上,且BE=CF.
①求证:△ABE≌△ACF;
②求证:△AEF是等边三角形.
(2)若点E在BC的延长线上,在直线CD上是否存在点F,使△AEF是等边三角形?请证明你的结论(图2备用).
分析:(1)根据菱形的性质得到AB=BC,∠ACB=∠ACF,根据SAS判定:△ABE≌△ACF;
(2)由全等得到AE=AF,∠BAE=∠CAF,因为∠BAE+∠CAE=60°,所以∠CAF+∠CAE=60°,即△AEF是等边三角形.
解答:解:证明:(1)
①∵四边形ABCD是菱形
∴AB=BC,∠ACB=∠ACF(2分)
又∵∠B=60°
∴△ABC是等边三角形(1分)
∴AB=AC,∠ACB=60°
∴∠B=∠ACF(1分)
∵BE=CF
∴△ABE≌△ACF;(1分)

②由△ABE≌△ACF
∴AE=AF,∠BAE=∠CAF(2分)
∵∠BAE+∠CAE=60°
∴∠CAF+∠CAE=60°,即∠EAF=60°
∴△AEF是等边三角形.(2分)

(2)存在(1分)
证明:在CD延长线上取点F,使CF=BE
与(1)①同理可证△ABE≌△ACF(2分)
∴AE=AF,∠BAE=∠CAF(1分)
∴∠CAF-∠CAE=∠BAE-∠CAE
∴∠EAF=∠BAC=60°
∴△AEF是等边三角形.(1分)
注:若在CD延长线上取点F,使CE=DF亦可.
点评:此题考查了菱形的性质,等边三角形的判定,全等三角形的判定方法等知识点,做题时要求学生对其灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网