题目内容

【题目】如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.

(1)求证:∠BCO=∠D;
(2)若CD= ,AE=2,求⊙O的半径.

【答案】
(1)证明:如图.

∵OC=OB,

∴∠BCO=∠B.

∵∠B=∠D,

∴∠BCO=∠D


(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,

∴CE= CD= ×4 =2

在Rt△OCE中,OC2=CE2+OE2

设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,

∴r2=(2 2+(r﹣2)2

解得:r=3,

∴⊙O的半径为3.


【解析】(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.
【考点精析】掌握勾股定理的概念和垂径定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网