题目内容

【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求证:AD平分∠BAC;

(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).

【答案】(1)证明见解析(2)

【解析】

试题分析:(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.

(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.

试题解析:(1)∵⊙O切BC于D,

∴OD⊥BC,

∵AC⊥BC,

∴AC∥OD,

∴∠CAD=∠ADO,

∵OA=OD,

∴∠OAD=∠ADO,

∴∠OAD=∠CAD,

即AD平分∠CAB;

(2)设EO与AD交于点M,连接ED.

∵∠BAC=60°,OA=OE,

∴△AEO是等边三角形,

∴AE=OA,∠AOE=60°,

∴AE=AO=OD,

又由(1)知,AC∥OD即AE∥OD,

∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,

==

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网