题目内容
【题目】在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.
(1)若CD=CA=AB,请求出y与x的等量关系式;
(2)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);
(3)如果把(2)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.
【答案】(1)3x+2y=180;(2)=;(3)成立.理由见解析
【解析】
试题分析:(1)由CD=CA,可表示出∠ADC的度数,又由三角形外角的性质,可得∠ADC=∠B+∠BAD,则可得方程:90﹣x=x+y,继而求得答案;
(2)由CD=CA,x=40,y=30,首先可求得∠ADC的度数,继而证得CD=CA,则可求得∠C=∠B=40°,证得AB=AC;
(3)首先在BC上取点E,使BE=CD=AB,连接AE,易证得AD=AE,继而可得△ADB≌△AEC(SAS),则可证得结论.
解:(1)∵∠ABC=x°,CA=AB,
∴∠C=∠ABC=x°,
∵CD=CA,
∴∠ADC=∠CAD==90°﹣x°,
∵∠ADC=∠B+∠BAD,
∴90﹣x=x+y,
即:3x+2y=180;
(2)∵CD=CA,∠ABC=x°=40°,∠BAD=y°=30°,
∴∠ADC=∠ABC+∠BAD=70°,
∵CD=CA,
∴∠CAD=∠CDA=70°,
∴∠C=40°,
∴∠C=∠ABC,
∴AB=AC;
故答案为:=;
(3)成立.
理由:在BC上取点E,使BE=CD=AB,连接AE,
则∠AEB=∠EAB=(180°﹣40°)=70°,
∴∠AEB=∠ADE=70°,
∴AD=AE,
∴∠ADB=∠AEC=180°﹣70°=110°,
∵BD=BE﹣DE,CE=CD﹣DE,
∴BD=EC,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴AB=AC.