题目内容
【题目】已知△ABC内接于⊙O,过点A作直线EF,
(1)如图1,若AB为直径,要使得EF是⊙O的切线,还需要添加的条件是(只须写出两种不同情况)① 或② .
(2)如图2,若AB为非直径的弦,∠CAE=∠B,试说明EF是⊙O的切线.
【答案】(1)①EF⊥AB,②∠EAC=∠B; (2)证明见解析.
【解析】
(1)添加条件EF⊥AB,根据切线的判定推出即可;添加条件∠EAC=∠B,根据直径推出∠CAB+∠B=90°,推出∠EAC+∠CAB=90°,根据切线判定推出即可;
(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠EAC+∠CAM=90°,根据切线的判定推出即可.
(1)添加的条件是①EF⊥AB,
理由是∵EF⊥AB,OA是半径,
∴EF是⊙O的切线;
②∠EAC=∠B,
理由是:∵AB是⊙O的直径,
∴∠C=90°,
∴∠B+∠CAB=90°,
∵∠EAC=∠B,
∴∠EAC+∠CAB=90°,
∴EF⊥AB,
∵OA是半径,
∴EF是⊙O的切线;
(2)
作直径AM,连接CM,
即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),
∵∠EAC=∠B,
∴∠EAC=∠M,
∵AM是⊙O的直径,
∴∠ACM=90°,
∴∠CAM+∠M=90°,
∴∠EAC+∠CAM=90°,
∴EF⊥AM,
∵OA是半径,
∴EF是⊙O的切线.
【题目】某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩十分制如下:
整理、描述数据按如下分数段整理、描述这两组样本数据:
10 | |||||
排球 | 1 | 1 | 2 | 7 | 5 |
篮球 |
说明:成绩分及以上为优秀,6分及以上为合格,6分以下为不合格
分析数据两组样本数据的平均数、中位数、众数如下表所示:
项目 | 平均数 | 中位数 | 众数 |
排球 | 10 | ||
篮球 |
得出结论
如果全校有160人选择篮球项目,达到优秀的人数约为______人;
初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高小军说:篮球项目整体水平较高.
你同意______的看法,理由为______至少从两个不同的角度说明推断的合理性