题目内容
【题目】已知有理数a,b在数轴上的位置如图所示.
(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:
(2)化简|a+b|+|a﹣b|.
【答案】(1)图见解析,b<﹣a<a<﹣b;(2)﹣2b.
【解析】试题分析:(1)首先根据-a与a,-b与b互为相反数,-a与a,-b与b表示的点关于原点对称,在数轴上标出-a,-b的位置;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较a,b,-a,-b的大小即可.
(2)根据有理数a,b在数轴上的位置,可得a>0>b,而且|a|<|b|,所以a+b<0,a-b>0,据此化简|a+b|+|a-b|即可.
试题解析:(1)如图所示:
,
b<﹣a<a<﹣b.
(2)∵a>0>b,而且|a|<|b|,
∴a+b<0,a﹣b>0,
∴|a+b|+|a﹣b|
=﹣(a+b)+(a﹣b)
=﹣a﹣b+a﹣b
=﹣2b
练习册系列答案
相关题目