题目内容
【题目】如图,∠BAC 的角平分线与 BC 的垂直平分线交于点 D,DE⊥AB, DF⊥AC,垂足分别为 E,F.若 AB=10,AC=8,求 BE 长.
【答案】BE=1
【解析】
先根据角平分线性质定理得到DF=DE,再利用中垂线性质得到CD=BD。进而证明Rt△CDF≌Rt△BDE,通过线段之间的数量关系即可求解。
解:如图,连接 CD,BD,
∵AD 是∠BAC 的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG 是 BC 的垂直平分线,
∴CD=BD,
在 Rt△CDF 和 Rt△BDE 中, ,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=10,AC=8,
∴BE=1.
练习册系列答案
相关题目
【题目】雾霾天气严重影响市民的生活质量.在去年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.
组别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | m |
C | 炉烟气排放 | 15% |
D | 其他(滥砍滥伐等) | n |
(1)本次被调查的市民共有多少人?
(2)求m、n的值,并计算图2中区域B所对应的扇形圆心角的度数;
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
【题目】二次函数 (a,b,c为常数,且 )中的 与 的部分对应值如表:
… | -1 | 0 | 1 | 3 | … | |
… | -1 | 3 | 5 | 3 | … |
下列结论:
① ;
②当 时,y的值随x值的增大而减小;
③3是方程 的一个根;
④当 时, .
其中正确的个数为( )
A.4个
B.3个
C.2个
D.1个