题目内容
(2015秋•安徽月考)如图,五边形ABCDE与五边形A′B′C′D′E′位似,对应边CD=2,C′D′=3,则AB:A′B′= .
已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是( )
A. m B. 4 m C. 4 m D. 8 m
下列方程中一定是一元二次方程的是( )
A. 5x2-+2=0 B. ax2+bx+c=0 C. 2x+3=6 D. (a2+2)x2-2x+3=0
如图所示,□ABCD的对角线AC,BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,那么□ABCD与四边形EFGH是否是位似图形?为什么?
已知在△ABC中,AB=AC=m,∠B=α,则边BC的长等于( )
A. 2m·sinα B. C. 2m·cosα D. 2m·tanα
小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验
(1)已知抛物线经过点(-1,0),则= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟
我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于
点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.
(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.
问题解决
(3) 已知抛物线
①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;
②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(为
正整数).求的长(用含的式子表示).
在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线 的关系,下列结论中错误的是
A. 两直线中总有一条与双曲线相交
B. 当=1时,两条直线与双曲线的交点到原点的距离相等
C. 当 时,两条直线与双曲线的交点在轴两侧
D. 当两直线与双曲线都有交点时,这两交点的最短距离是2
方程x2﹣5x=0的解是_____.