题目内容
【题目】如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC的度数是( )
A. 30° B. 45° C. 50° D. 55°
【答案】B
【解析】
根据∠ADC=90°,求出∠CDF和∠ADF,根据矩形性质求出ED=EC,推出∠BDC=∠DCE,求出∠BDC,即可求出答案.
设∠FDC=x°,则∠ADF=3x°,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴x+3x=90,
x=22.5°,
即∠FDC=x°=22.5°,
∵DF⊥AC,
∴∠DFC=90°,
∴∠DCE=90°﹣22.5°=67.5°,
∵四边形ABCD是矩形,
∴AC=2EC,BD=2ED,AC=BD,
∴ED=EC,
∴∠BDC=∠DCE=67.5°,
∴∠BDF=∠BDC﹣∠CDF=67.5°﹣22.5°=45°,
∴∠DEC=90°﹣45°=45°
故选B.
练习册系列答案
相关题目