题目内容

【题目】如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠B,DF平分∠D,求证:BE∥DF.

【答案】证明:∵在四边形ABCD中,∠A=∠C=90°, ∴∠ABC+∠ADC=180°,
∵BE平分∠B,DF平分∠D,
∴∠EBF+∠FDC=90°,
∵∠C=90°,
∴∠DFC+∠FDC=90°,
∴∠EBF=∠DFC,
∴BE∥DF
【解析】根据角平分线的定义和四边形的内角和进行解答即可.
【考点精析】认真审题,首先需要了解平行线的判定(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行),还要掌握多边形内角与外角(多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网